«Квант» — научно-популярный физико-математический журнал (издаётся с 1970 года)Старый сайт журнала: kvant.ras.ru
В бесконечной цепочке нервных клеток каждая клетка может находиться в одном из двух состояний: «покой» и «возбуждение». Если в данный момент клетка возбудилась, то она посылает сигнал, который через единицу времени (скажем, через одну миллисекунду) доходит до обеих соседних с ней клеток. Каждая…
Вершины правильного $n$-угольника покрашены несколькими красками (каждая — одной краской) так, что точки одного и того же цвета служат вершинами правильного многоугольника. Доказать, что среди этих многоугольников найдется два равных.
Пусть $l_1$, $l_2$, ..., $l_n$ — несколько прямых на плоскости, среди которых есть две пересекающихся. Докажите, что можно единственным образом выбрать на каждой из этих прямых по точке $X_1$, $X_2$, ... так, чтобы перпендикуляр,…
Длины двух сторон треугольника 10 и 15. Докажите, что биссектриса угла между ними не больше 12.
В треугольнике $ABC$ сторона $AC$ — наибольшая. Докажите, что для любой точки $M$ плоскости $AM + CM$ не меньше $BM$. В каких случаях возможно равенство?
Докажите, что если на каждой грани выпуклого многогранника выбрать по точке и провести из этой точки вектор, который направлен перпендикулярно соответствующей грани во внешнюю сторону и длина которого равна площади этой грани, то сумма всех таких векторов будет равна нулю.
Текст задачи готовится
Два велосипедиста едут по двум пересекающимся окружностям. Каждый едет по своей окружности с постоянной скоростью. Выехав одновременно из одной из точек их пересечения и сделав по одному обороту, велосипедисты вновь встретились в этой точке. Докажите, что на плоскости, в которой лежат…