Точки $M$ и $N$ — основания высот треугольника $ABC$, опущенных из вершин $A$ и $B$, поэтому третья высота проходит через точку $H$ их пересечения, причём точки $C$, $M$, $N$ и $H$ лежат на одной окружности $\delta$ с диаметром $CH$. Пусть $P$ — центр этой окружности. Заметим, что при движении диаметра $AB$ величина угла $C$ треугольника остаётся неизменной, — она измеряется полуразностью постоянных по величине дуг $AB$ и $MN$ (см. рисунок). Поскольку хорда $MN$ неподвижна, остаётся неизменной и окружность $\delta$ (по которой движутся точка $C$ и диаметрально противоположная ей точка $H$), а тем самым и её центр $P$: диаметр $CH$ — участок интересующей нас высоты — просто вращается вокруг точки $P$.
Рисунок